niteshade.models.BaseModel
- class niteshade.models.BaseModel(architecture: list, optimizer: str, loss_func: str, lr: float, optim_kwargs={}, loss_kwargs={}, seed=None)
Bases:
torch.nn.modules.module.Module
Abstract model class intended for ease of implementation in designing neural networks for data poisoning attacks. Requires an architecture to be defined in the form of a list or nested list containing the sequence of torch.nn.modules objects needed to perform a forward pass.
NOTE: If cuda is available, the class/model will be automatically sent to torch.device(“cuda”).
- Parameters
architecture (list) – list or nested list containing sequence of nn.torch.modules objects to be used in the forward pass of the model.
optimizer (str) – String specifying optimizer to use in training neural network. Options: “adam”: torch.optim.Adam(), “adagrad”: torch.optim.Adagrad(), “adamax”: torch.optim.Adamax(), “sgd”: torch.optim.SGD().
loss_func (str) – String specifying loss function to use in training neural network. Options: “mse”: nn.MSELoss(), “nll”: nn.NLLLoss(), “bce”: nn.BCELoss(), “cross_entropy”: nn.CrossEntropyLoss().
lr (float) – Learning rate to use in training neural network.
optim_kwargs (dict) – dictionary containing additional optimizer key-word arguments (Default = {}).
loss_kwargs (dict) – dictionary containing additional key-word arguments for the loss function (Default = {}).
- __init__(architecture: list, optimizer: str, loss_func: str, lr: float, optim_kwargs={}, loss_kwargs={}, seed=None)
Initializes internal Module state, shared by both nn.Module and ScriptModule.
Methods
__init__
(architecture, optimizer, loss_func, lr)Initializes internal Module state, shared by both nn.Module and ScriptModule.
add_module
(name, module)Adds a child module to the current module.
apply
(fn)Applies
fn
recursively to every submodule (as returned by.children()
) as well as self.bfloat16
()Casts all floating point parameters and buffers to
bfloat16
datatype.buffers
([recurse])Returns an iterator over module buffers.
children
()Returns an iterator over immediate children modules.
cpu
()Moves all model parameters and buffers to the CPU.
cuda
([device])Moves all model parameters and buffers to the GPU.
double
()Casts all floating point parameters and buffers to
double
datatype.eval
()Sets the module in evaluation mode.
evaluate
(X_test, y_test)Compute evaluation metric on some test data.
extra_repr
()Set the extra representation of the module
float
()Casts all floating point parameters and buffers to
float
datatype.forward
(x)Perform a forward pass through the model.
get_buffer
(target)Returns the buffer given by
target
if it exists, otherwise throws an error.get_extra_state
()Returns any extra state to include in the module's state_dict.
get_parameter
(target)Returns the parameter given by
target
if it exists, otherwise throws an error.get_submodule
(target)Returns the submodule given by
target
if it exists, otherwise throws an error.half
()Casts all floating point parameters and buffers to
half
datatype.load_state_dict
(state_dict[, strict])Copies parameters and buffers from
state_dict
into this module and its descendants.modules
()Returns an iterator over all modules in the network.
named_buffers
([prefix, recurse])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children
()Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules
([memo, prefix, remove_duplicate])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters
([prefix, recurse])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters
([recurse])Returns an iterator over module parameters.
register_backward_hook
(hook)Registers a backward hook on the module.
register_buffer
(name, tensor[, persistent])Adds a buffer to the module.
register_forward_hook
(hook)Registers a forward hook on the module.
register_forward_pre_hook
(hook)Registers a forward pre-hook on the module.
register_full_backward_hook
(hook)Registers a backward hook on the module.
register_module
(name, module)Alias for
add_module()
.register_parameter
(name, param)Adds a parameter to the module.
requires_grad_
([requires_grad])Change if autograd should record operations on parameters in this module.
set_extra_state
(state)This function is called from
load_state_dict()
to handle any extra state found within the state_dict.share_memory
()See
torch.Tensor.share_memory_()
state_dict
([destination, prefix, keep_vars])Returns a dictionary containing a whole state of the module.
step
(X_batch, y_batch)Perform a step of gradient descent on the passed inputs (X_batch) and labels (y_batch).
to
(*args, **kwargs)Moves and/or casts the parameters and buffers.
to_empty
(*, device)Moves the parameters and buffers to the specified device without copying storage.
train
([mode])Sets the module in training mode.
type
(dst_type)Casts all parameters and buffers to
dst_type
.xpu
([device])Moves all model parameters and buffers to the XPU.
zero_grad
([set_to_none])Sets gradients of all model parameters to zero.
Attributes
T_destination
alias of TypeVar('T_destination', bound=
Mapping
[str
,torch.Tensor
])dump_patches
This allows better BC support for
load_state_dict()
.- evaluate(X_test, y_test)
Compute evaluation metric on some test data.
- Parameters
X_test (np.ndarray or torch.Tensor) – test input data.
y_test (np.ndarray or torch.Tensor) – test target data.
- Returns
evaluation metric.
- Return type
(np.ndarray or torch.Tensor)
- forward(x)
Perform a forward pass through the model.
- Parameters
x (np.ndarray or torch.Tensor) – Input array of shape (batch_size, input_shape).
- Returns
- Predictions from current state of
the model.
- Return type
(np.ndarray or torch.Tensor)
- step(X_batch, y_batch)
Perform a step of gradient descent on the passed inputs (X_batch) and labels (y_batch). The inputs and labels are automatiucally
- Parameters
X_batch (np.ndarray, torch.Tensor) – input data used in training.
y_batch (np.ndarray, torch.Tensor) – target data used in training.